エネットまつもと学習会 2015

第8回:世界と日本の水資源と地下水問題

2015年11月26日

長野県地球温暖化防止活動推進員) 宮澤

テーマ: 水資源と水質問題を考える(世界の水から松本の水まで)

く世界の水資源>

<u><水の惑星:地球></u> 私たちの住む地球は、水の惑星と呼ばれています。水は、大部分の生命を育む源泉です。 地球上には、どれだけの水があるのでしょうか。

<地球上の水の量:使える水は?>

<u>地球には13億8000万立方キロメートルの水</u>があります。人類一人あたり、諏訪湖3個分もあります。 ところが、97%は、海水なのです。簡単に使えません。

次に多いのが、**氷河で、2750万立方キロメートル**。大部分は、南極大陸とグリーンランドです。これもほとんど使えません。

<使える水はどこに?> 地下水: 820万立方キロ

<u>淡水湖: 10万立方キロ</u> 河川: 0.17万立方キロ

地下水がたくさんあります。地下水は、雨水が地面にしみこんで補充されますので、補充される範囲で使う 必要があります。(世界の現実は、将来を考えず、過剰に使われています。)

湖や河川の水も同じです。使える量は、補充される範囲内です。

補充される量のことを循環量といいます。循環量の範囲内で、利用することができるのです。

<u> <循環量(=利用できる最大値)は?></u> <u>地下水: 1.4万立方キロ</u>

淡水湖: 2.4万立方キロ

河川: 2.4万立方キロ

地下水の平均寿命は600年なので、資源がたくさんあっても、毎年使えるのは、600分の1です。 利用できる量を、70億人で分けたら、一人当たり、約9,000トンとなります。

たくさんありますが、ほしいところにあるわけではありません。

ロシア: 北極圏へ流れ込む大河が3つあるが、ほとんど人は住んでいない。(レナ、エニセイ、オビ) 世界最大の大河、アマゾン川: 熱帯雨林のため、莫大な水量だが、ほとんどは、海へ流出してしまう。 中国の大河である黄河: 過剰な水利用により、水量が極端に減少し、断流が発生することもあります。 東南アジアのモンスーン気候の多雨地帯の川も、雨期には、ほとんど海へ行ってしまう。上流の中国が、 最近、ダムをどんどん作って、乾季には渇水に。(水資源支配を狙っています。)

アラル海の悲劇:世界第4位の湖が、過剰な利用で、わずか半世紀で4分の1の大きさに・・・

<水資源問題は、農業問題>

・水は、圧倒的に、農業で使われますので、水資源の問題は、農業問題です。そして、農業問題は、食糧問題であり、人口問題、格差問題とも密接に関係し、持続可能な社会をつくる鍵となります。

グリーンウォーター: 土壌から蒸発し、雨で土壌に戻る水

天水農業のもと <u>6万立方キロ(60 兆トン) 世界の農業の60%</u>を占めます。

<u>ブルーウォーター</u>: 再生可能な水資源 川、湖、地下水 利用できるものが <u>4 万立方キロ(40 兆トン)</u> このうち、約10%が利用されています。

<u>農業用水: 2,500 立方キロ(2.5 兆トン)</u> (←食糧問題と密接に関係します。)

 工業用水:
 750 立方キロ (7,500 億トン)

 都市用水:
 350 立方キロ (3,500 億トン)

<u><世界の水はどうなるのか></u>

・農業の水需要は、ますます、増加していきます。

灌漑農業が、世界の食糧を支えています。

人口爆発、肉食化、貧富の拡大、バイオ燃料等、穀物需要の増加、⇒水需要の増加の話ばかりです。

<u>《緑の革命》</u> : 第2次大戦後、途上国の食糧増産革命。実は<u>水と**化学肥料の大量消費によっています。</u></u>**

化学肥料は、石油の大量消費で作られます。⇒地球温暖化、資源枯渇

水は、灌漑により確保⇒地球温暖化、水資源の枯渇、土壌の劣化

<u> ⇒永続するやり方ではありません。</u>

<u><地球温暖化は、水資源の片寄りを拡大する></u>

温暖化というと、農業に適するように聞こえますが・・・ 温暖化は温暖化だけではありません。 対流活動が活発になるため、雨の多いところは、さらに雨が多くなり、乾燥地帯はますます乾燥します。 **気** 温は良好なのに、水が足りない地域がますます増えることになります。

<食生活の変化は、水資源を危機に陥れる>

〇生活レベルの向上は、農業の水使用量を激増させます。

<u>肉食化⇒家畜用穀物消費⇒生産の水需要増加</u> 1 Kg の小麦=2トンの水 1 Kg の牛肉=20ト ンの水

<世界の地下水の問題>

オガララ帯水層: アメリカ中部の世界最大の穀倉地帯「グレートプレーンズ」の地下水。面積 45 万平方キロと日本の総面積よりはるかに広い面積を占めています。降水量の少ない地域で、河川・湖沼も少ないため、地下水に頼る灌漑農業がおこなわれており、地下水へ補充される量の数倍も水をくみ上げているため、水位の低下が大問題になっています。このままでは、持続しない農業です。休耕や段々畑等の対策も行われていますが、低下は止まりません。

大<u>鑽井盆地:</u> オーストラリア中東部、日本の面積の5倍の世界最大の鑽井盆地。地下水は、羊の牧畜等に使われている。地下水の寿命も約100万年と世界最長。乾燥地帯ですので、貯まるまで100万年掛かっているということです。これだけ長いと、循環型ではあっても、1回限りの化石資源と言っても過言ではありません。

<u>インドの灌漑農業:</u>世界第2位の人口を養うために、地下水による灌漑農業に依存しており、枯渇する井戸の増加が大問題になっています。そのため、地下水依存から、昔の"ため池"利用を推進しているところもありま

世界の畑作農業は、乾燥地帯が多く、地下水に依存しています。そして、<u>世界中で、地下水の水位低下</u>が発生しています。

<水を奪い合う世界>

石油・石炭等の化石燃料と同じことが、世界で起きつつあります。

グローバル経済の中に組み込まれようとしています。強い者だけが、水を支配・独占しようとしています。

水は、あらゆる生命の源です。人類も例外ではありません。

持続可能な社会の構築のために、みんなで水を大事にし、守っていくことが大切です。

海に流出してしまいます。日照りが続けば、たちまち、少なすぎる水で悩むことになります。

<多すぎる水、少なすぎる水!?日本の水資源>

日本の降水量 年間平均約1,700mm 世界平均の約2倍。 アジアモンスーン地域で、台風や低気圧による大雨、洪水等、多すぎる水に悩まされることもめずらしくないが、気温も比較的温暖であり、農業に適した気候。ところが、狭い国土、国土の形、急峻な地形などにより、山から海までの距離が短く、降水は、1日から2日で

<日本文明と水との関わり: "治水"と"利水">

日本の文明は、長年にわたり、**自然環境を崇拝し、水との共存を図る**ことで、存続してきました。 その鍵は、**稲作、里山文化**です。とくに、江戸時代は、稲作の命である水を守るのも、"多すぎる水 (洪水)" を抑制するにも森林であることが認識され、森林の保護、開発の抑制が、幕府を挙げて行われました。 また、幕府による大名の配置も、藩の形を河川の流域の形に合わせ、その中で、稲作、里山の循環型社会が形成されました。

当時、世界最大の都市、江戸では、河川の利用だけでなく、多くの水路が作られました。"治水"と"利水"の両方を意識されています。多くの江戸の水路は、水が海へ流れる方向と直角な方向を基本としています。傾斜を小さくして、水のエネルギーを抑えるとともに、水をできるだけ長く滞留させて、有効利用しようとしています。また、水路は、都市と近郊農村との物流(循環)に利用され、世界でただ1つの循環型の大都市を支えていました。

<u><水を分け合う:三分一湧水(山梨県)></u>

集落の水争いが絶えなかった戦国時代の甲斐の国の話です。武田信玄は、集落の水争いを収めるために、水源の 分水枡に三角形の石杭を建設して、3つの集落に公平に水が流れるようにしたというエピソードです。対立 を共存に変えた土木遺産として、公園化され、博物館も併設されています。(山梨県北杜市長坂町)

<現代日本の水問題>

日本の人口は、1億2000万人と非常に多く、人口密度が高い。

⇒**一人あたりの水資源量は、約3,300 立米/年。世界平均の約半分です。**利用できる水は、多くはありません。大雨等で、利用されずに流出してしまう水も少なくありません。

たとえば、ダムの貯水量が非常に少ない。⇒ただし、ダムの貯水量が水の豊かさではない。水質の良さは、世界有数と言えます。(水質悪化は、世界的には大問題となっています。)

<u><ダム問題></u>長年の国の政策は、<u>ダムを中心とした"治水"と"利水"です。河川、水路も、まっすぐに、素</u>早く海へ流すことが基本となっており、<u>"自然を征服する"という考え</u>が根底にあります。この考えだけでは限界であることは、国の財政問題だけでなく、地球環境全般の状況、循環型社会の考え方、最近の自然災害の増加など、いろいろな側面からも感じられます。

緑のダム=森林、水田 国土の70%を占める森林が、水を豊富に蓄えています。洪水防止の役目も大きい。水質維持の役割も大きい。

<u><日本は水を効率よく使っている。但し、外国に水を使わせている></u>

水資源が効率よく利用されています。 都市生活者の比率が高い。(必要な水は多くない。) 工業は、技術力で節水が進んでいます。

食糧自給率39%の意味: **外国に大量の水を使わせている**ことを、理解しておく必要があります。 (日本の国内で使う水の総量に近いくらいの水を使わせています。年間約640億トンになります。)

<気候変動の影響>

気候変動、地球温暖化が大問題になっていますが、日本では、それでも、毎年、必ず、雨が降ります。 ただし、**地球温暖化の影響で雨の降り方の変動が大きくなっており**、"治水"と"利水"の両面から、"ダム問題"を一例として、環境との関わり方を考えていく必要があります。

<松本の地下水のひみつ>

<上水道について>

〇日本の上水道の普及率: 1950年26%、1960年53%、2006年97%

<u>⇒赤痢等、水系伝染病は、100分の1以下となりました。 塩素殺菌 0.1ppm以上と水道法で決めら</u>れています。

塩素は残留性が高く、効果が持続するため、配水系の途中から病原菌が侵入しても、殺菌できます。

残留塩素臭は、家庭用浄水器で取ることができます。ただし、浄水器を通した水は、保管には適さない。

〇塩素滅菌も万能ではない。

・トリハロメタンの問題: 水の中の有機物と塩素が反応して、発がん物質のトリハロメタンが生成されます。・クリプトスポリジウム: 人、ペット、家畜等の寄生虫。下水等から汚染することがあります。塩素で死なない。

<u>どちらの問題も、水源の原水がきれいならば、発生しない。</u>重要なのは、水源地の環境保全、すなわ ち、土壌や森林の保全です。

○松本の上水道の水源と、松本の地下水 (松本市上下水道局のホームページに詳しく紹介)

水源は、市内各所の井戸と奈良井川上流の河川水です。

水源がきれいなので、トリハロメタンやクリプトスポリジウムの問題は発生しません。

〇まつもと城下町湧水群: 環境省選定 平成の名水百選に選ばれています。

松本市が井戸整備を実施し、水質検査結果も掲示しています。(検査項目は、もっとほしいところですが・・・) 歩いて回れる範囲に、たくさんの井戸がありますので、井戸巡りをして、それぞれの水を味わってみましょう。

○硬度のはなし: 軟水と硬水

「硬度」といえば、通常は「アメリカ硬度」を使います。水1リットル中に含まれるカルシウム・マグネシウムの量(ミリグラム)を、炭酸カルシウム(CaCO3)の量に換算した数値です。

それぞれの原子量は Ca=40、Mg=24.3、分子量は $CaCO_3=100$ なので、カルシウム濃度・マグネシウム濃度からの計算は以下のようになります。

硬度(mg/L)≒ カルシウム濃度(mg/L)×2.5 + マグネシウム濃度(mg/L)×4.1

水の味わいに密接な関係があります。硬度の値によって、<u>硬水や軟水</u>という名称で呼ばれます。世界保健機関 (WHO) の基準では、60以下を軟水、120以上を硬水としています。<u>ヨーロッパの水はほとんどが硬水</u>であり、一方<u>日本の水は軟水が多い。</u>硬水は日本人の口には合わないとされています。

軟水は赤ちゃんのミルク作り、お茶やだし汁などに適しています。

一方、硬水はミネラルウォーターの名の通り、ミネラル分の補給、また灰汁(あく)を析出しやすい為、灰汁の出る料理に適しています。 また、硬水は石鹸の泡立ちを妨げます。

以下に、松本市の水質データを紹介します。(※2010年のデータ:毎年 HP で公表されている。大きな変化はない。)

2010年度 水質検査結果

2010 十尺											
原水の水質(主な項目を抜粋)		水道の原水				まつもと城下町湧水群					
検査項目	採水場所	島内第一	源地	大久保第一	松原	大名小路	松本神社	女鳥羽の泉			
	基準値	浅井戸	深井戸	深井戸	松塩用水						
硝酸態窒素、 亜硝酸態窒素	10ppm	1.15	3.15	2.91	0.27	1.4	1.4	2.4			
フッ素	0.8ppm	0.2	0.22	0.11	0.11	0.1	0.7	_			
ホウ素	1ppm	0.04	0	0	0	0.1	0.5	_			
総トリハロメタン	0.1ppm		_	1	0.0037	-	1	_			
ナトリウム	200ppm	5.6	46.1	4.8	2.7	16.0	90.0	_			
塩化物イオン	200ppm	5.2	24.2	6.7	3.2	10.8	20.0	17.0			
カルシウム、 マグネシウム等 (硬度)	300ppm	48	130	53	35	72	8	83			
全有機炭素(TOC	5ppm	0.1	0.2	0.1	0.3	0.2	0.2	_			
pH値	5.8 ~ 8.6	6.4	6.6	6.4	7.4	7	8	7			

硝酸態窒素、亜硝酸態窒素: 松塩用水は、奈良井川上流の水なので、非常にきれいです。井戸の方が高目です。 水源の井戸では基準内ですが、そのほかの井戸では、<u>基準超過が多数</u>あります。<u>農業汚染(窒素肥料汚染)</u>が 原因となっています。基準内ならまったく問題ありませんが、基準が制定された背景には、血液の酸素輸送障害や 体内で発がん物質を生成するリスクがあります。

硬度: 市内の中心部で高い。特に、源地は、硬水のレベル。地下水に独特の味わいをかもし出している。

市販のミネラルウォーター等の水質比較

メーカー・品名等	採水地·種類等	ナトリウム	カルシウム	マグネシウム	カリウム	硬度
		(ppm)	(ppm)	(ppm)	(ppm)	
Volvic	フランス	11.6	11.5	8.0	6.2	60
Evian	フランス	7.0	80.0	26.0	_	304
Vittel	フランス	7.3	91.0	19.9	4.9	307
Crystal Geyser	アメリカ	11.3	6.4	5.4	1.8	38
天然水南アルプス(サントリー)	山梨県白州	7.0	10.5	2.0	3.0	30
大地が磨いたきれいな水	前橋市	8.2	8.0	1.7	1.8	28
MIU(ミウ) (ダイドー)	高知県(海洋深層水)	18.0	5.5	16.4	5.5	80
いろはす(コカコーラ)	富山県砺波市	8.3	8.7	2.0	0.7	30
天然水(7&I)	群馬県みなかみ	14.0	20.0	5.5	1.2	73
源池の深井戸	46.0				130	
松原∙松塩水道	2.7				35	

フランスと国産の硬度の違いに着目ください。

<松本盆地の地下水資源の信頼性>

<u>地下水位は、</u>松本市の36年間の記録では、1980年代までは、長期低下傾向ですが、1990年代後半以降は安定しています。

__松本盆地の地質構造:_

松本盆地の地下の地質構造は、水を通さない岩盤の上に堆積した砂礫層となっており、豊富な地下水を蓄えています。盆地の東縁は、糸魚川・静岡構造線を形成し、東側の岩盤が盆地の砂礫層に乗り上げる形の逆断層になっており、地下水の流出をブロックしています。松本盆地からの水の出口は、表面の犀川のみであり、地下には出口がないことから、松本分地の井戸の枯渇リスクは小さいと考えられます。

<水資源の循環とエネルギー利用>

無限とも言える太陽の恵み(エネルギー)は、主に水を介して、さまざまなエネルギーに変換されて、地球全体の水循環・大気循環を形成し、気候システムを構成する。(温度、相変化、運動エネルギー、位置エネルギー等) このような自然エネルギーとしての水の利用は、まだわずかであるが、大きな将来性がある。

水力発電・海流発電・波力発電・海洋温度差発電・雪氷の冷熱源利用・地下水の熱源利用・各種ヒートポンプの熱源・潜熱利用(気化熱による冷却)・・・